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Abstract:

Facial emotion recognition is a pivotal component in the domain of affective computing, aiming to bridge the gap
between human emotional expression and machine interpretation. This study introduces a deep learning-driven
framework for multi-facial emotion recognition, leveraging diverse data modalities including static images, video
frames, and webcam inputs. The model was trained and evaluated using the CK+ dataset with a systematic data
split for training, testing, and validation to ensure robustness. A Fusion Convolutional Neural Network (Fusion
CNN) was proposed to optimize feature extraction and improve classification accuracy across heterogeneous input
sources. The implementation was realized using Python with OpenCV and Keras libraries, while statistical
validation, including chi-square tests and regression analysis, was conducted in R to assess model consistency and
accuracy. Among the various models tested, the Fusion CNN demonstrated superior performance with an accuracy
of 72.16%, surpassing traditional CNN and RNN architectures. The results underscore the potential of the
proposed approach in advancing real-time emotion recognition systems, with future scope for integration into
intelligent user interfaces and assistive applications.

Keyword: Facial Emotion Recognition, Fusion Convolutional Neural Network (Fusion CNN), Deep Learning
and Multimedia Input Processing

1. Introduction

While language plays a crucial role in facilitating human contact, it is often accompanied by
supplementary forms of expression, including gestures, posture, and vocal inflections, which
enhance the whole communicative experience. The characteristics are commonly accompanied
by physiological responses, such as elevated heart rate, and are contingent upon the
circumstances of the interaction[1].

Despite the significant role that human computer interaction and human-mediated
communication play in contemporary society, there remains a lack of essential tools for
comprehending and addressing non-verbal cues related to attitudes, emotions, and mental
states. These cues, which are commonly utilized in human communication and reasoning, are
currently not adequately accounted for in these domains. According to the observation
conducted by [2],individuals interact with computers in a manner similar to their interactions
with other individuals. A few basic emotions can be seen in the Figure 1.
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Figure 1: State of Emotion (source: facial expression recognition Archives - Sefik Ilkin
Serengil (sefiks.com))

Since antiquity, facial expressions have been studied, in part because they are the most
significant form of nonverbal communication. At first, renowned philosophers and thinkers
like Aristotle and Stewart examined face expressions[3].

The study of face expressions evolved into an empirical field of research with Darwin.
Researchers in the fields of psychology and cognitive science were very interested in Darwin's
studies. Numerous studies linking facial expression to emotion and interpersonal
communication were conducted in the 20th century. Most significantly, Paul Ekman
reexamined Darwin's findings and asserted that there are six universal emotions that can be
created and understood regardless of cultural background[4], [5], [6]

With the help of emotion human behavior can be recognized where the various data are
available, and these can be used for the different computer-based environments to study or for
the research purpose. All these complex’s calculations take place in a 2D normalized emotional
complex model valence scale can be seen in Figure 2.

Emotion is one of the most important human life to understand, but many of us are not able to
understand the emotions of other people which can cause harm to him/her and later the
consequences become very difficult, sometimes leading to suicide, depression and many other
things[7].

While language helps to understand the tone of speech and classify it accordingly but when the
new person enters other kingdom or other country then it becomes problem to talk and
understand the situation so the emotion classifier might help at least to understand whether to
talk or not talk based on the current mood or emotion of the respective person.

There are many studies conducted using the pre-approved dataset and real-time application not
applicable many times, so in this part, after training the model, the real-time deployment and
accuracy to the real world were generated. Few people who cannot speak (deaf-mute) it
becomes very difficult to another person to adjust to their space, or they feel left out or improper
treatment is given to them, but facial expression gives many understanding through which
processing the facial complexity might help other understand the same.
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Health is also one of the factors to be considered for emotion, because if the person is not well
or any health issue by using the characterization or judging by character the output tends out
to be in the result. Such as a person being ill from inside (not good health) and having smile on
face, but it is clearly visible by body temperature or coughing so such character help to
recognize the state of person, which is actually not happy, which in further state can be mental
health issue, Trauma health issue, disorder health issue.
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Figure 2: 2D normalized Emotion Complex (source: The 2-D Emotion Wheel | Download
Scientific Diagram (researchgate.net))

As due to different facial structure or facial complexion it is also a challenging part to say
whether the person is happy or other things, because in Asian countries the complexity and
also the facial structure, for example if we compare between the India and Thailand the facial
structure ( like eyes) it seems more tedious to help to understand the emotion, so the dataset
available are defined for specific part and specific place, because while training the model
accuracy may change and which can result into wrong emotion detection.

As according to study the facial emotion study is being in continuous upgrade under biomedical
as emerging because of the lack of understanding, but this is the new demand of era that
emotion are taken upmost care and for which it is also stated that due to sad emotion the
behavior on mental health is affected and due to which many disturbing scenario take place
such as depression, suicide and other a lot on wellbeing too. To develop a model with high
accuracy for multi facial emotional recognition for the image, video, and live webcam.
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The main scope of this study is to bridge the model made for facial emotional recognition with
the real world working and later test the efficiency of it and the accuracy of the same. The study
is also done to serve the people in need or the hospital and the psychiatrist, the disabled people
and last but not least the people facing problems might be true work done for them to save them
from taking any further actions.

2. Literature review

Many research scientists have summed up a result and claim that wellie people live long, have
a less chronic disease, which led to healthier lifestyle and low death rates is seen in such
case[8]. So, emotion plays an important role in seeing the health and wellbeing both.
Characterization which means the distinctive nature of a person or someone.

With which help the analyze the relationship. Health being an important aspect as the ratio of
death seen which clearly shows healthy people live more than unhealthy people. WHO says
12.6 million are each year due to unhealthy environment. Emotion which can take control over
a person should be also considered but many ignore such things and due to which lack of
understanding creates the situation of vulnerability [4], [9], [10], [11].

One of the articles from medical news today says that major emotional distress can be seen at
work because of primary reasons: concern about job security, long hours, low pay, poor
working condition, increasing responsibility, a lack of control over work and relationship
between colleagues and managers

Initial steps to understand is the emotion and understanding the emotion with the other behavior
is the characterization. If the person is happy and he/she is automatically getting the good well
and better health care is done[8], [9], [10], [12], [13], [14]., the objective is to find the perfect
database as of which FER 2013 database is considered the one of the certified datasets among
all. It is also said that this computer vision requires high-level image processing, and this type
of project is the need of an era. The flow is to image acquisition, preprocessing of an image,
face detection and feature extraction with extraction of image. The emotion which are taken
into consideration are happy, sad, angry, disgust, surprise, fear which are accepted by many
other researcher groups [11], [12], [13], [14], [15], [16]. Various emotions and their description
are detailed in Table 1 below.

EMOTION Motion of Facial Parts
Happy Open eyes, open mouth, lips corner pulled, cheeks raised
Sad Outer eyebrow down, inner eyebrows raised, eyes closed, lip corner down

Surprise Eyebrow up, open eyes, jaw dropped

Anger Eyebrows pulled down, open eyes, lip tightened
Fear Outer eyebrow down, inner eyebrows up, mouth open
Disgust Lip corner depressor, lower lip depressor, eyebrows down, nose wrinkled
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Table 1: Emotion and facial Action Units (Saravanan et al., 2019)

[15] the change in the hyperparameters setting of convolutional neural networks is needed to
attain the higher efficiency. The hyperparameter setting are done after training the dataset and
generating the new at same point. The FER2013 after using CNN gave the 72.16% efficiency.
Number of kernel in first convolutional layer is 32 and max is 256 with step 32. The maximum
number kernel is 512 steps with the step 64. The dropout value is 0.4 and 0.1 for the

convolutional layers and for fully connected layer the dropout value is 0.1.

NETWORK TYPE

ACCURACY %

ENSEMBLE CNN 75.8
FusioN CNN + BOVW 7542

MULTITASK CNN 75.2
HyYBRID CNN 73.73
CNN 72.7
RESIDUAL 72.4
DEEP CNN 71.6

Table 2:Summary of results on FER2013

[17]

[18]

[19]

[20]

[21]

[22]

Convolutional Layer:4
Kernel: 32, 64

Dropout: 0.2

Dense: 1024, 4096
Convolutional Layer:3
Kernel: 32, 64

Kernel size: 4*4, 5*5
Dense: 1024
Convolutional Layer:6
Kernel: 32, 64, 128
Dropout: 0.1, 0.4, 0.5
Kernel size: 3*3

Dense: 2048
Convolutional Layer:8, 16
Kernel: 32, 64, 128, 256, 512
Kernel size: 3*3, 5*5
Dropout: 0.5

Dense: 1000, 4096
Convolutional Layer:3, 4, 5
Kernel: 32, 64, 128
Kernel size: 3*3

Dense: 2048
Convolutional Layer:32
Kernel: 16 to 384
Dropout: 0.4
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Table 3:Summary of Hyperparameter settings

[23] the author claims to use the Candide grid note to face landmark pattern as shown in Figure
3 . In this the grids are formed over and analyzed over it; geometric displacement shows the
facial expression intensity frame which is then used by SVM. The database used while
performing was Cohn-Kanade Database, which has multiclass SVM and which led to the
accuracy of 99.7% and for proposed SVM it went to 95.1% for facial emotional recognition
[24], [25].

Grid initialization

Figure 3: Grid Initialization (source: Bing)

[26] the author says the emotion is primary stage and also the emotion triggers the physical as
well as mental fatigue and due to which problems start, later to which emotion are classified
into 3 categories. (Low, medium, High) and to serve this new methodology is introduced DOG
and HOG, where the pairs are formed of eyes, nose and lips and facial features are extracted
along with it as shown in Figure 4.

- L.

Figure 4:DOG and HOG (source: Bing)

No Name of paper Year Comments Public.
1 A Multimodal Multi-Party 2019  Lack of dataset, F and IEEE
Dataset for Emotion weighted average score was
Recognition in Conversation 65% for text+audio
[27] combination, Annotation is

to be done, method used
RNN and LSTM, RNN was
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useful and high accuracy,
New model dataset defined

2 Evaluation and Discussion 2009  Feedback is to be ICCEE
of Multi-modal Emotion considered, DaFEx database
recognition.[28] used, Bi-Modal

Performance was 78.17%.
Recommendation for multi-
cue fusion was given

3 Stress Recognition using 2016 3 ways to detect stress, with ~ IEEE
Face Images and Facial facial landmarks and grey
Landmarks [29] face image 64.63% was

performance, own database
used

4 Modeling Stress using 2013 Svm technique was used IEEE
Thermal Facial Patterns: A and stress recognition were
spatio-temporal Approach better with the HDTP
[30] features

5  The Facial Stress 2018  Neutral, low and high stress =~ IEEE
Recognition Based on classes identified and HOG
Multi-histogram features and DWT method was used
and Convolutional Neural for extraction , the database
Network[31] is FERET and k fold

validation is 5.

6  The Use of Al for Thermal = 2020  Thermal vs RGB images are =~ IEEE

Emotion Recognition [32] compared and RGB gas
good computer vision and
even works on low data
quality

7  Emotional and Physical 2021  The use of EEG, ECG and Annals
Stress Detection and GSR is being used, deep of
Classification using learning techniques used are  RSCB
Thermal Image Technique SVM and CNN with 89%

[33] accuracy.

8  Cross Subject Multimodal 2020  Only 3 classes to be used IEEE
Emotion Recognition Based and the accuracy for hybrid
on Hybrid Fusion [34] fusion is 81.2% and mean

accuracy is 74.2% , some
limitation are covered.

9 Convolutional MKL Based 2016  Temporal CNN is proposed, = IEEE
Multimodal Emotion the audio visual and text are
Recognition and Sentiment used with the good result
Analysis [35] and if only image is used

about 71% is good
probability.

10 Computer Vision and Image 2016  Multi modal video induced = ELSEV
Understanding [36] emotion recognition is being ~ IER
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11

12

13

14

15

16

17

18

A survey of Face
Recognition Technqiues
[37]

A synthesis Based
Approach for Thermal to
Visible Face Verification
[38]

Facial Emotion Recognition
system through Machine
Learning Approach. [39]

A novel facial emotion
recognition method for
stress inference of facial
nerve paralysis patient [40]
Mental stress recognition
based on non-invasive and
non contact measurement
from stereo thermal and
visible sensors [41]

Automated classification
and recognition of facial

expression using infrared
thermal imaging [42]

High resolution thermal face
dataset for face and
expression recognition [43]
Video-based facial
expression recognition using
graph convolutional
networks [44]

2009

2021

2017

2022

2015

2004

2020

2021

proposed based on 27
participants.

Application of face
recognition is stated, also
the difficulties and feature
based approach.

ARL_VTF and TUFTS
multi spectral face dataset
are used for which
algorithm are created and
lastly the strong
performance on MILAB-
VTF(B) dataset is
recommended.

These include image
acquisition, pre-processing
and feature extraction and
ISED database is used
Diagnosis of facial nerve
paralysis is fone and
accuracy is 66.59%,
VGGNet model is used
Internal emotion state,
almost 98% of correct
measurement of ROI and
temperature was
detected,SIFT 88.6% of
correct matching.

Visible spectrum is used and
IRTI was identified facial
expressions were derived
from it and the happiness,
sadness and disgust were the
results

Established facial
dataset(Equinox,Carl db),
use of LBP pattern.

The dyanamic expression
capture is the motive to be
used in this and using the
CNN, but the use of Graph
CN is done, CASIA CK+
dataset is used
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19

20

21

22

23

24

25

26

27

Facial Expression
Recognition in Image
Sequences using Geometric
Deformation Features and
Support Vector Machines
[45]

A multimodal features
fusion framework for
kinetic based facial
expression recognition using
dual kernel displacement
analysis [46]

Facial Emotion Recognition
using Convolutional Neural
Networks [47]

Going Deeper in Facial
Expression Recognition
using Deep Neural
Networks [48]

Hyperparameter
optimization in CNN for
learning centred emotion
recognition for intelligent
tutoring systems [49]

Convolution Neural
Network Hyperparameters
optimization for facial
emotion recognition.[50]

Oriented attention ensemble
for accurate facial
expression recognition [51]
Facial Expression
recognition using dual
dictionary learning.[52]

Multimodal Emotional
Recognition using Deep
Learning [53]

2007

2021

2019

2021

2019

2021

2020

2017

2021

Candide gride notes for face
recognition is used, the grid
tracking and deformation
system used, multiclass
SVM of classifiers 5
expressions.

Multi-modal feature fusion
framework for kinetic, the
performance of LDA and
KDA is also done with
average accuracy improving
by 10%.

Methods including decision
trees, neural network are
used, various
hyperparameter tunning the
finally accuracy was 0.60.
Most of them are based on
HOG,LBPH and Gabor
where just changing
hyperparameter are tuned to
best accuracy.

CNN method is used , the
problem of hyperparameter
in CNN is defined, proposal
of genetic algorithm for
tuning the hyperparameter
of CNN, for which the 8%
growth was there.

The optimal hyperparameter
of network were determined
by generating and training
models based on Random
search algorithm, FER2013
data with accuracy 72.16%.
Weighted mask and
correlation calculation with
the fused to get the output.
Dual dictionary method is
used for regression and SRC
and CRC, database are Ck+,
CK,MMLJAFEE for input
and training

Multimodal are studied
across unimodal as they
offer high accuracy rate ,
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emotional awareness
problem is to be solved.
Different dataset are studied
with various method.
28 Real time speech emotion 2021  AlexNET-SVM, FTAlexNet IEEE

recognition using RGB were investigated and Berlin
Image classification and Emotional Speech Database
Transfer Learning [54] is used. Transfer learning is

used for flexible model.

Dual Stream Multi task GEME is used to get the
29  Gender based Micro 2020  gender detetction, the ELSEV
expression recognition [55] unique micro expression is IER

done using this and the age
and gender can be
commented or tell using

expression.
30 Video and Image based 2015 It consist of audio video IEEE
Emotion Recognition with the AFEW database
Challenges [56] and this was conducted
with the open problem
31 A fully annotated Thermal = 2018  As there is not much data IEEE
face database and its available and this field is
application for thermal vast growing in computer
facial expression vision, so the author saw the
recognition [57] short coming of data and

have created database which
is annotataed manually and
process using the machine
learning SVM.

Manual annotation is done
and also this can be further
used for medical
parameters.

SVM gave the 75%
efficiceny and the other
gave low such as KNN BDT
NB RF other models used
for this.

Table 4:Summary of Literature review
The summary of the entire literature review is presented in Table 4.

3. Methodology

Dataset

There are already many pre-available datasets which has been worked on like some of the most
common used datasets are.
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FER 2013 dataset
Berlin Emotional Dataset
Asian Character Dataset
Music Mood Classification Dataset
Cohn Kanade Dataset
IEMOCAP dataset
e Dual Emotional dataset
But after listing out few of them, the most efficient dataset is Cohn Kanade, It is bit hard to
pre-process, many researcher have used FER 2013 and Cohn Kanade dataset and efficiency
with the accuracy of Cohn Kanade dataset gave the perfect result. The emotion and no. of
instances related to it are mentioned in Table 5.

The model was trained for 200 epochs and achieved an accuracy measure of 71.1%
on the FER2013 dataset, 99.31% on the CK+ database. Training data 20%, Testing 40% and
Validation set 40%. [52], [53], [54], [55], [56], [57]

No. Expression No. of Instances
1 Angry 527

2 Contempt 47

3 Disgust 389

4 Fear 458

5 Happy 614

6 Normal 913

7 Sad 540

8 Surprised 602

Table 5 : CK+ dataset Instances

Convolutional 1
Feature maps

Convolutional 2 Pooling 2
Receptive Field

Fully Connected Layer Classification
N
N\,
»__»\.\ '\\ %
e o o
//
//
N N/
N RY) =
|L“ NN/
Q5
s
‘,\ e B
§
Receptive Feld
; ;"\5;, Receptive Field
Figure 5: Convolutional Neural Network
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(source: https://www.bing.com/images/blob?bcid=S7F-N9gpFaoEcw )

Geometrical and Grid Feature Extraction

It is one of the easiest and primary extraction used for facial as this consume very less space
and also it has been used by many researchers, the efficiency of geometrical feature extraction
with cnn as shown in Figure 5 is 73.98% [56], [57] and this is the primary source of extraction

and with the help of simple data process the features are extracted and labelled as below Figure
6.

Geometric features | Numberof | Description
/ features
/ Eycbrow 4x2 Two extreme comers,
”,"'.,7’7'.'/\_7 a1 \’\ : upper and lower midr points
" » Eyes 4x2 Two extreme comers,
s B upper and lower mid points
LS - r \%) - Nose 3 Two nostrils and nose tip
g Lip 4 Two extreme comers,
N B P upper and lower mid points
N o

Figure 6: Geometrical Feature Extraction (source: literature review)

Grid feature extraction is one of the latest use extraction with use of 98% machine learning
algorithm [58].In this extraction each nodes contains some weight and bias too. The grid is
drawn over the face and analyses process take place and then processing is done using image
processing and the facial feature extraction take place as shown in Figure 7.
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Figure 7: Grid feature Extraction ([56], [57])

Facial Analysis
In this the pattern of emotion to be analyzed with facial marking is being done as Table 6.

Emotion Motion of Facial parts
Happy open eyes, open mouth lip comer pulled, cheeks raised
Sad Outer eyebrow down,inner eyebrows raised, eyes closed, lip

comer down

Suprise Eyebrow up, open eyes, jaw dropped

Anger Eyebrow pulled down, open eyes, lip tightened

Fear Outer eyebrow down, mnner eyebrow up, mouth open

Table 6: Facial Analysis

The proposed study was designed to develop and evaluate a multi-facial emotion recognition
system utilizing diverse input modalities, including static images, video recordings, and real-
time webcam feeds as shown in Figure 8. Initially, the publicly available CK+ dataset was
employed for model training, validation, and testing, with the data split in a stratified manner
to ensure balanced representation of all emotional categories. A custom Fusion Convolutional
Neural Network (Fusion CNN) architecture was implemented to manage the high-dimensional
feature extraction and classification tasks. This hybrid deep learning model leveraged the
spatial capabilities of CNNs and the layered complexity of deep neural networks to enhance
recognition accuracy.

Following model training on the curated dataset, the system was deployed in a real-time
environment using OpenCV-integrated webcam input. The trained model was tested on live
subjects to evaluate its practical performance in detecting emotions such as happiness, sadness,
and disgust. To assess the perceptual validity of the model’s predictions, a user feedback
mechanism was incorporated. Participants were prompted to confirm the correctness of the
model's real-time emotional prediction through a structured questionnaire administered via
Google Forms. This allowed for an empirical correlation between algorithmic output and
subjective human feedback, providing a foundation for calculating real-world accuracy and
system efficiency.

The entire implementation was carried out using Python, with supportive libraries such as
OpenCV for image processing, Pandas for data handling, and custom kernel functions for
model tuning. Furthermore, R programming language was employed for statistical modelling
and hypothesis testing. Specifically, chi-square tests and regression analyses were conducted
to evaluate the relationship between predicted and reported emotions, offering insights into
model reliability and generalizability.
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Normalize face images
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PCA classifier

v
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r 3

Recognition

training

Face samples collection

Figure 8: Flowchart of working Methodology

4. Results and Discussion

In the initial phase of this study, precise detection of facial landmark grid points was a critical
step. The Canadian Grid Node system enabled accurate masking and identification of Facial
Action Units (FAUs), as demonstrated in Figures 9 and 10. These figures illustrate the
landmark points — such as the nose tip and eye centres — in a 2D grid format, effectively
mapped on facial structures prior to preprocessing.
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train. (). ()

left _eye center x

left eye center y
right_eye center_x
right eye center y
left_eye_ inner_corner_x
left _eye inner corner_y
lett eye outer corner x
left eye outer corner y
right eye inner corner_x
right_eye inner_corner_y
right eye outer corner x
right _eye outer corner_y
lett eyebrow inner_end x
lett eyebrow inner_end y
left eyebrow outer end x
lett eyebrow outer_end y
right_eyebrow_inner_end_x
right eyebrow inner_end y
right eyebrow outer_end x
right eyebrow outer_end y
nose_tip x

nose_tip_y

mouth_left corner_x
mouth_left_corner_y
mouth_right corner_x
mouth_right corner_y
mouth_center top lip x
mouth_center top lip y
mouth_center_bottom_lip x
mouth_center bottom lip y
Image

dtype: int64

Figure 9: Code to get the FAU point. (The facial landmarks are pointed here as with each grid
note, as we can see for ex. nose tip and left eye center, all the point are in 2D format)

| Facial Keypoints Detection

Figure 10: Grid Node Mask on Face with FAUs. (when the masking is done and point are
identified and facial node are captured before pre processing)

Also, when the same was run over the dataset, the FAU was performed can be seen in the figure
11 below, this entire system is processed on the dataset considered.
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Figure 11: FAUs over dataset (CK+)

Next, the hyperparameter tunning was one of the most important and crucial step because the
difference in the accuracy was clearly been seen and also the selection of tunning parameter
was one of the most care taken step, which can been seen on the figure 12.

time
history = model. (X_train,y_train,epochs = 108, batch_size = 32,validation_split = 8.2)

====] - 185s 1s/step - loss: 3.5127 - root_mean_squared_error: 4.7714 - accuracy:
4.6713 - val_root_mean_squared_error: 5.6209 - val_accuracy: ©.6988
Epoch 8/1@
177/177 [= ====] - 184s 1s/step - loss: 3.3821 - root_mean_squared_error: accuracy:
€ 2.3590 - val_root_mean_squared_error: 3.1863 - val accuracy: 0.6929
Epoch 9/1@
177 /177 [= ====] - 185s 1s/step - loss: 3.3459 - root_mean_squared_error: accuracy:
©.6219 - val_loss: 5.5018 - val_root_mean_squared_error: 6.1752 - val_accuracy: 8.6950
Epoch 18/10
177/177 ===== - 185s 1s/step - loss: 3.2291 - root_mean_squared_error: accuracy:
8.6377 - _loss: _ _mean_squared_error: 5.2131 - val_accuracy: 0.6716
CPU times: user 1h 57min 19s, sys: 14.2 s, total: 1h 57min 33s
Wall time: 31min

time
history = model.fit(X_train,y_train,epochs = 2066

221/221 [ 2s 7ms/step - 1 e. root_mean_squared_error: accuracy:
7849
Epoch 198/200
221/221 2s 7ms/step - 1 e. root_mean_squared_error: accuracy:
7858
Epoch 199/260
221/221 [== = 2s 7ms/step - : e. root_mean_squared_error: accuracy:
7908
Epoch 208/200

2s Tms/step - : 0. root_mean_squared_error: accuracy:

CPU times: user 11min 1s, sys: 48.9 s, total: 1lmin 5@s
Wall time: 6min 23s

Figure 12: Hyperparameter tuning for accuracy.

When the model was being trained under the CNN model, the accuracy was obtained as 72.16%
with the dataset used for this. The Figure 13 and 14 are the accuracy for the CNN model only.
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Figure 13: CNN model accuracy plot from the model prepared by changing the hyper
parameter settings

Angry ﬂ 0.00 0.09 007 017 0.02 013
Disgust 043 000 011 011 018 004 014
Fear 011 0.00 040 004 023 0.08 016
=]

:2 Happy { 002 0.00 002 086 0.02 001 007
Sad 0.08 0.00 01]. 0.08 H 0.02 021
Surprise 0.03 0.00 011 007 003 071 0.05

Neutral 004 0.00 006 011 013 0.02 H
« Q\‘,&"\ & ‘\o*;"* & u})\;*“'t \@“}

predicted label

Figure 14: Confusion Matrix for CNN

The Convolutional Neural Network (CNN) was first employed for classification, yielding an
accuracy of 72.16%. The accuracy trends, shown in Figure 4.1.5, demonstrate the impact of
tuned hyperparameters on performance. Further validation through the confusion matrix in
Figure 4.1.8 revealed that the model was most effective at recognizing the “Happy” class, while
the “Disgust” class had negligible representation, possibly due to class imbalance in the dataset.
To compare model performance, VGG-16 was also employed under similar experimental
conditions. The accuracy achieved was 68.13%, as shown in Figure 15, with training dynamics
presented in Figure 4.1.10. While CNN slightly outperformed VGG-16, the latter still exhibited
competitive results, affirming its applicability for emotion recognition tasks.

17

(OMOM

International Journal of DeepTech in Medical Science and Technology,
Vol 1, No. 1, September-October 2025
ISSN: 3088-2370 (Online) | © Geoinformatics International



International Journal ,.\'..p

DEEPTECHm .

MEDICAL SCIENCE
& TECHNOLOGY

pyplot. (15
(px, cmap
((8))
(n

(emotion_label_to_text[label])

anger anger anger anger anger anger anger disgust disgust dlsgust disgust disqust disgust disgust fear
7 = - -
e B A N B El +
Lo [\ = 3
fear fear fear fear fear av happlness happlness happlness happlness happiness happiness happiness sadness sadness
P \ s 3 5= \ T
8 Y K 5 = A R
_ (L] 20 L
sadness sadness sadness sadness sadness surprnse surprise surprise surprise surprise surprise surprise neutral neutral neutral
7 3 ~
| 4 .
‘ﬂl!ﬂli[ﬁllsﬂal
i e | —~
neutral neutral neutral neutral

Figure 15: Accuracy for VGG16.
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Figure 16: Accuracy for VGG16 plot

The third model implemented was a CNN built using the Keras framework, which achieved an
accuracy of 62.5%. Although this was the lowest among the three, it still demonstrated
acceptable performance and served as a baseline to validate the system pipeline. The training
results for this model are presented in Figure 16.

18

International Journal of DeepTech in Medical Science and Technology, @
Vol 1, No. 1, September-October 2025
ISSN: 3088-2370 (Online) | © Geoinformatics International



DEEPTECH N . Tk
MEDICAL SCIENCE )2
& TECHNOLOGY

Figure 17: Plot for CNN with Keras

Model Accuracy Remarks
(%)
CNN 72.16 Highest accuracy among the tested models after
(Custom) hyperparameter tuning.
VGG-16 68.13 Slightly lower performance; still effective for emotion
recognition.
CNN (Keras) | 62.5 Moderate accuracy; performance lower than other models.

Table 7: Accuracy Comparison of Different Models for Emotion Recognition

Following model evaluations, the system was tested in real-time applications using images,
videos, and webcam input. Figure 17 displays the output for a sample dataset image. In video-
based testing, the system captured sequential frames and processed them individually. For
instance, a 3-minute video produced 7241 frames, all processed for emotion classification.
Frame-wise emotional transitions were captured and visualised in Figure 18 and a summary of
the video processing is shown in Figure 19.

(The eyes have been masked because of data privacy with the user).

Neutral

08 1

0.7 1

061

054

047

031

021

011

0 10 20 30 40 0.0

Angry Disgust Fear Happy Sad Surprise Neutral

Figure 18: Result for Objective 1 using dataset image.
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Video_Two_output

Figure 19: Video output being captured for Objective 1

Lastly, the system was deployed on a live webcam demonstration, as shown in Figure 20. The
DeepFace package was integrated for simplified real-time facial expression classification.
Due to privacy concerns, user eye regions were masked.

face_classif
classifier =load_sodel

emtion_labels = ['Angry’, 'Disgust’, ‘Fear’, "Happy’, ‘Neutral

prediction = classifier.predict(roi)(o]

Figure 20: Webcam output for Obj 1

Overall, the proposed system demonstrated effective facial emotion recognition through
accurate landmark detection and robust model training. The Canadian Grid Node enabled
precise masking of Facial Action Units (FAUs), which was essential for consistent feature
extraction across the dataset. Among the models tested, the custom CNN achieved the highest
accuracy at 72.16%, followed by VGG-16 with 68.13%, and the Keras-based CNN with 62.5%.
Hyperparameter tuning played a crucial role in enhancing model performance. The system’s
applicability was further validated through real-time emotion detection using images, videos,
and webcam inputs, showcasing its potential for real-world emotion analysis tasks. These
results affirm the feasibility of using deep learning frameworks for accurate and scalable facial
emotion recognition[59], [60], [61].
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5. Conclusion and Future Scope

The present study aimed to develop a robust and scalable deep learning-based framework for
multi-facial emotion recognition across heterogeneous input formats including static images,
video streams, and real-time webcam feeds. Through a comprehensive evaluation of various
neural architectures, including a custom Convolutional Neural Network (CNN), a Recurrent
Neural Network (RNN), and a Keras-implemented CNN, the study identified that the custom
CNN outperformed the others, achieving an accuracy of 72.16%. This significant performance
differential underscores the critical role of architecture-specific customization and pre-
processing in enhancing classification efficacy for affective computing tasks. The results
further demonstrate the feasibility of deploying such systems in real-world environments where
emotion recognition must be performed with high reliability and across diverse visual
inputs[62], [63], [64], [65].

A key contribution of this research lies in its methodological approach, which integrates
efficient facial landmark extraction, noise reduction techniques, and structured training
pipelines to enhance recognition stability and accuracy. The application of facial geometry
analysis through the Canadian Grid Node System, combined with OpenCV-based alignment
and normalization, facilitated more consistent emotional state detection across diverse lighting
conditions, facial orientations, and subject demographics. This has practical implications for
domains such as healthcare, e-learning, intelligent surveillance, and human-computer
interaction, where emotional context significantly influences decision-making and user
experience [66], [67], [68], [69], [70].

Moreover, the study highlights important considerations for ethical deployment, particularly in
safeguarding against algorithmic bias and ensuring inclusivity across demographic variations.
The findings contribute to the discourse on responsible Al design by emphasizing transparency,
interpretability, and the ethical use of facial emotion recognition technologies. The model’s
performance, when benchmarked across different modalities, reinforces the potential of deep
learning to decode human affect with a considerable degree of accuracy, while also pointing to
limitations inherent in current datasets and evaluation frameworks [71], [72], [73], [74], [75].

Looking forward, future research may explore the integration of multimodal data sources, such
as voice, text, and physiological signals, to augment the emotion classification framework.
Additionally, the implementation of attention-based models or transformer architectures can be
examined for capturing more nuanced affective states in real time. Expanding the training
corpus to include cross-cultural, age-diverse, and expressionally varied datasets will enhance
the generalizability and fairness of the system. Beyond technical improvements, clinical
validation and interdisciplinary collaborations with psychologists, neuroscientists, and UX
designers will be instrumental in translating this work into impactful applications. Ensuring
adherence to ethical standards, particularly concerning privacy, consent, and fairness, will
remain a foundational imperative as emotion recognition technologies advance toward
widespread adoption [76], [77], [78], [79], [80].
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